National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Determination of the most suitable ratio of cathode materials for the lithium-sulfur battery system
Benešová, Petra ; Kazda, Tomáš (referee) ; Jaššo, Kamil (advisor)
This master's thesis deals with a topic of determination of the most suitable ratio of cathode materials for the lithium-sulfur systems. The first two chapters provide a general introduction to the topic of electrochemical energy sources and present the commonly used primary and secondary battery systems with emphasis on their characteristics and applications. The core of the theoretical part is dedicated to lithium-ion and lithium-sulfur batteries, their working principles along with the benefits or drawbacks related to the particular systems, and widely used materials. The experimental part briefly comments on determining the suitable electrode paste preparation method, the subsequent main part is focused on evaluation of electrochemical performance of cells using different ratios of cathode materials. Five samples of cathode materials were prepared, where the sulfur ratio is in range from 64 to 88 wt. %. Finally, the comparison of all prepared ratios in terms of their electrochemical properties is provided.
Synthesis and characterization of sulfurized polymers for electrochemical power sources
Svoboda, Lukáš ; Kazda, Tomáš (referee) ; Čech, Ondřej (advisor)
Batteries based on lithium-sulfur technology have the potential to increase the amount of stored energy in comparison with current lithium-ion systems while maintaining the same weight. Achieving this goal is possible due to the high theoretical energy density of sulfur, which exceeds the values of other materials used in batteries. However, these batteries suffer from several failing, which still hinder the practical use. The use of amorphous sulfur instead of its crystalline form might lead to increasing of durability and charge efficiency. Inverse vulcanization of sulfur seems to be the perspective method for the preparation of polymer sulfur because it prevents its recrystallization and stabilizes amorphous sulfur. The aim of this thesis is the preparation and study of properties of materials made of inverse vulcanized sulfur.
Determination Of The Most Suitable Ratio Of Cathode Materials For The Lithium-Sulfur Battery System
Benešová, Petra
This paper presents the topic of lithium-sulfur batteries with a main focus on the influenceof different ratio of the cathode materials on the final electrochemical performance of the cell.The theoretical part of the article provides a comprehensive overview of the Li-S technology, mainadvantages and challenges related to the practical use of Li-S systems, and briefly mentions thetypical cathode materials. The objective of the experimental part is to provide a comparison of differentratios of cathode materials in terms of their electrochemical performance, taking into considerationthe physicochemical properties of prepared materials.
Determination of the most suitable ratio of cathode materials for the lithium-sulfur battery system
Benešová, Petra ; Kazda, Tomáš (referee) ; Jaššo, Kamil (advisor)
This master's thesis deals with a topic of determination of the most suitable ratio of cathode materials for the lithium-sulfur systems. The first two chapters provide a general introduction to the topic of electrochemical energy sources and present the commonly used primary and secondary battery systems with emphasis on their characteristics and applications. The core of the theoretical part is dedicated to lithium-ion and lithium-sulfur batteries, their working principles along with the benefits or drawbacks related to the particular systems, and widely used materials. The experimental part briefly comments on determining the suitable electrode paste preparation method, the subsequent main part is focused on evaluation of electrochemical performance of cells using different ratios of cathode materials. Five samples of cathode materials were prepared, where the sulfur ratio is in range from 64 to 88 wt. %. Finally, the comparison of all prepared ratios in terms of their electrochemical properties is provided.
Influence Of Ambient Temperature On Electrochemical Parameters Of Lithium-Sulfur Batteries
Jaššo, Kamil
With the increasing popularity of electric vehicles, the demand for their range is increasing and thus demand for the batteries that power them. Range of current electric vehicles using Li-ion battery technology is around 250 miles (400 km). In the case of use of new prospective next-gen batteries such as Lithium-sulfur (Li-S) range of the electric vehicle may be doubled or even tripled. However, there are many challenges ahead of using these batteries in electric vehicles. Since the batteries in electric vehicles are largely affected by ambient temperature, this article deals with researching the effect of ambient temperature on lithium-sulfur batteries.
Synthesis and characterization of sulfurized polymers for electrochemical power sources
Svoboda, Lukáš ; Kazda, Tomáš (referee) ; Čech, Ondřej (advisor)
Batteries based on lithium-sulfur technology have the potential to increase the amount of stored energy in comparison with current lithium-ion systems while maintaining the same weight. Achieving this goal is possible due to the high theoretical energy density of sulfur, which exceeds the values of other materials used in batteries. However, these batteries suffer from several failing, which still hinder the practical use. The use of amorphous sulfur instead of its crystalline form might lead to increasing of durability and charge efficiency. Inverse vulcanization of sulfur seems to be the perspective method for the preparation of polymer sulfur because it prevents its recrystallization and stabilizes amorphous sulfur. The aim of this thesis is the preparation and study of properties of materials made of inverse vulcanized sulfur.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.